9.3 Area of Trapezoids (6.G.1)

Vocabulary

- a quadrilateral with one set of parallel sides.

Key Concepts: Trapezoid

 $A = \frac{1}{2} \cdot \text{ height } \cdot \text{ (base}_1 + \text{base}_2)$

OR
$$A = \frac{1}{2} \cdot h \cdot (b_1 + b_2)$$

The height is the perpendicular distance between the bases.

The two bases are parallel. They will always be the same distance apart.

Step:

- 1.) Write the formula.
- 2.) Fill in the numbers.
- 3.) Answer.

Guided Practice:

Find the area of each trapezoid. Round to the nearest tenth if necessary.

$$A = \frac{1}{2} \cdot h \cdot (b_1 + b_2)$$
 $A = \frac{1}{2} \cdot 8 + (\frac{1}{1} + \frac{1}{1} + \frac{1$

9.3 Area of Trapezoids (6.G.1)

$$\frac{75}{34} = h$$

5.) In the National Hockey League, goal tenders can play the puck behind the goal line only in a trapezoid-shaped area, as shown. Find the area of the trapezoid.

$$A = \frac{1}{2} \cdot h \cdot (b_1 + b_2)$$
 $A = \frac{1}{2} \cdot 11 + (\frac{18 + 28}{18 + 28})$
 $A = \frac{1}{2} \cdot 11 + (\frac{18 + 28}{18 + 28})$

Partner Talk

Find the area of the figure.

$$A = \frac{1}{2} \cdot h \cdot (b_1 + b_2)$$
 $A = \frac{1}{2} \cdot 11 \, \text{cm} \cdot (\frac{22 \, \text{cm}}{13 + 4})$

A= 121 cm2

Building on the Essential Question - How is the formula for the area of a trapezoid related to the formula for the area of a parallelogram?

Two congruent trapetoids make a parallelogram.

Rate Yourself - Are you ready to move?

